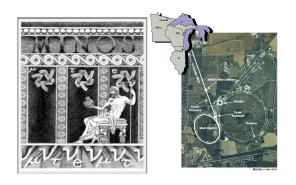
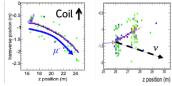
MINOS+ Results and Future Plans


Will Flanagan, University of Texas, on behalf of the MINOS+ Collaboration

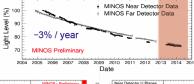
February 5 2015

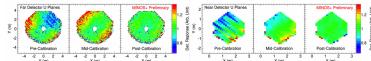
Outline


- Overview of the Main Injector Neutrino Oscillation Search Detector
- Long baseline neutrino oscillations $(\nu_{\mu} \rightarrow \nu_{\mu}, \nu_{\mu} \rightarrow \nu_{e})$
- The search for sterile oscillations $(\nu_{\mu} \rightarrow \nu_{s})$
- Other exciting physics searches (LED, NSI, etc)

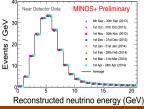
The MINOS Detector

- $L_{Near} = 1$ km, $m_{Near} = 0.98$ kton
- $L_{Far} = 735 \text{ km}, m_{Far} = 5.4 \text{ kton}$
- Two functionally similar steel-scintillator sampling calorimeters
 - 2.5cm thick steel planes, plastic scintillator with WLS fibers to M16/M64 Hamamatsu PMTs

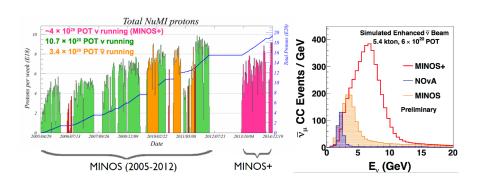



The MINOS Detector - Aging

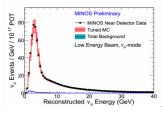
• Our detector has aged as expected. We've seen > 95% live time!

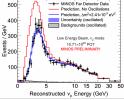

• We see a consistent decline in light yield which we are able to

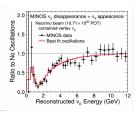
correct for.



Calibrated energy spectrum shows incredible stability!

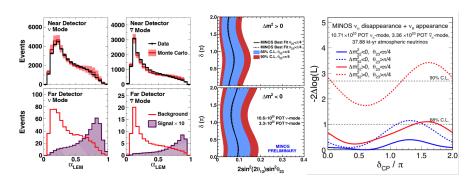

Medium Energy NuMI Beam

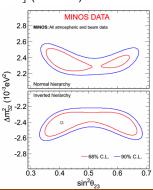

- Medium energy NOνA-era beam since September 2013
- 300 kW, 120 GeV beam, with 2.5×10¹³ protons per pulse
- Beneficiaries of the Fermilab proton improvement plan (PIP)



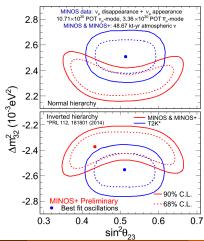
MINOS ν_{μ} Disappearance

- Near detector data used to predict unoscillated far detector spectrum.
- Low energy NuMI beam optimized for primary oscillation peak.
- PRL 110, 251801, 2013

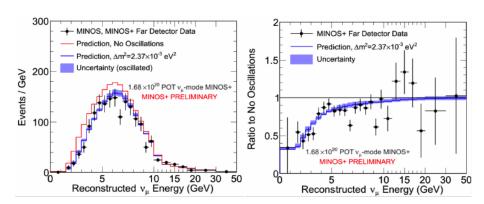



MINOS ν_e Appearance

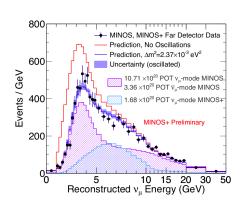
- MC-based Library Event Matching (LEM) technique used to distinguish ν_e events from NC events.
- Nonzero value of θ_{13}
- Sensitivity to $\delta_{\it CP}$ when incorporating reactor limits (Dooble Chooz, Daya Bay, RENO)
- PRL 110, 171801, 2013

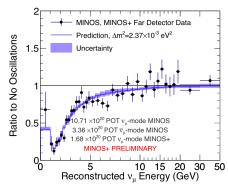

MINOS Combination: ν_e + ν_μ (Beam and Atmospheric)

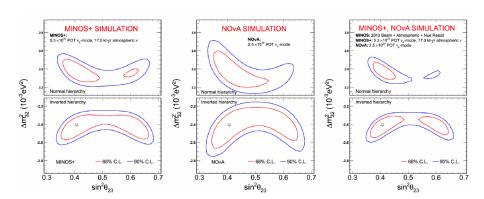
- Neutrino physics enters a precision era!
- Normal Hierarchy:
 - $|\Delta m_{32}^2| = [2.28 2.46] \times 10^{-3} \text{ eV}^2 \text{ (68\% CL)}$
- Inverted Hierarchy:
 - $|\Delta m_{32}^2| = [2.32 2.53] \times 10^{-3} \text{ eV}^2 \text{ (68\% CL)}$
 - $\sin_{23}^2 = [0.34 0.67] (90\%CL)$
- PRL 112, 191801 (2014)


Comparison with T2K

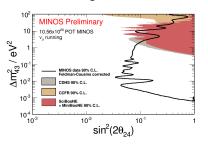
- We continue to improve our sensitivity with more atmospheric neutrino data.
 - We accrue an additional 5 kt-yr each year
- Good agreement with T2K

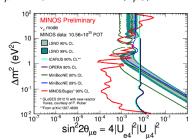

MINOS+ (September 2013 and Beyond)


- Significant statistical improvement to rising edge of oscillation peak!
- Data accrued since September 2013 4.2×10²⁰ PoT and counting.
- Preliminary results only for MINOS+ beam oscillations.


MINOS/MINOS+ Combination

- Robust combination using both MINOS and MINOS+ disappearance samples.
 - Significant increase in statistics along rising edge of primary oscillation.


Combination with NO ν A

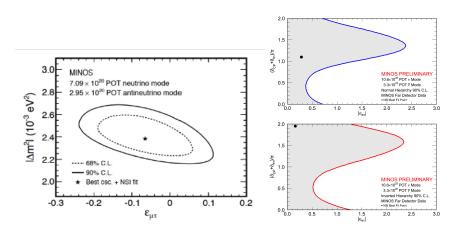


- No published beam oscillation result yet with MINOS+.
- MINOS+ result continues to be relevant for the next few years.

But are there more than 3 flavors???

- The long baseline and broad spectrum of MINOS+ opens up swaths of unexplored parameter space (left).
- Combination with the Bugey reactor experiment (right) to set 3+1 sterile mixing limits relevant to $\nu_{\mu} \leftrightarrow \nu_{e}$ transitions ($\theta_{\mu e}$).

- Combination with Daya Bay in progress.
- Also searching for steriles arising from Large Extra Dimensions.
- Since we are in parallel with the sterile neutrino session, I won't dwell on these exciting searches...


Non-Standard Interactions

- Neutrinos could interact in a non-standard way
 - Friedland, Lunardini, Maltoni, PRD 70, 111301(2004)
 - Coelho, Kafka, Mann, Schneps, Altinok, PRD 86, 113015 (2012)
- ν_{μ} disappearance sensitive to $\epsilon_{\mu\tau}$
- ν_e appearance sensitive to $\epsilon_{e\tau}$

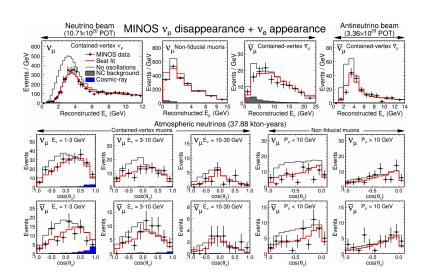
$$H = U_{PMNS} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{bmatrix} U_{PMNS}^{\dagger} + \sqrt{2} G_F n_e \begin{bmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^{\star} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^{*} & \epsilon_{\mu\tau}^{*} & \epsilon_{\tau\tau} \end{bmatrix}$$

Non-Standard Interactions

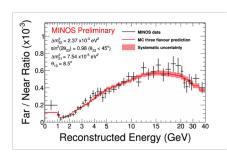
- Disappearance: $-0.20 < \epsilon_{\mu\tau} < 0.07$ (90% CL) (left)
 - PRD 88 072011 (2013)
- Appearance: Sets limits to $\epsilon_{e\tau}$ and δ_{CP} (right)

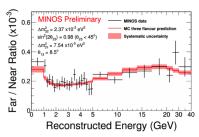
Future Plans

- Funding has been approved through FY2016.
- No detector upgrade is planned.
- Future running depends on physics potential.
 - $NO\nu A$ is now the driving experiment along the NuMI beamline.
 - We will see what anomalies or lack thereof 2015 and 2016 has in store for us!
 - Check back in this summer!

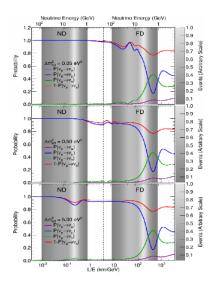

Conclusion

- The Pioneering Experiment Still Has It!!!
 - Continuing to push our understanding of the atmospheric mixing parameters.
 - Unique sensitivity to sterile oscillation searches.
 - Valuable combinations with reactor and other long baseline searches.
 - Large extra dimensions, non-standard interactions, and more.
 - Goldmine of data for new searches!


Backup

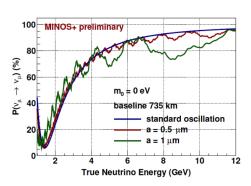

MINOS Combination

Sterile Searches: F/N Ratio


- For sterile searches, the possibility of short baseline oscillations requires a new technique from previous long baseline searches.
 - Far over near ratio employed for both CC and NC samples.

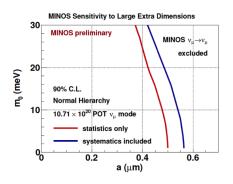
Sterile Searches: F/N Ratio

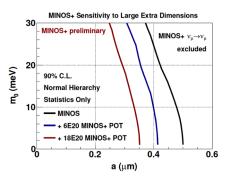
• Near detector oscillations become non-negligible for large Δm_{43}^2



LED Sterile Neutrinos

• The oscillation amplitude is given by Arkani-Hamed et al.


$$A(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i,j,k=1}^{3} \sum_{n=0}^{+\infty} U_{\alpha i} U_{\beta k}^{*} W_{ij}^{(0n)*} W_{ki}^{(0n)} e^{i\frac{(\lambda_{j}^{(n)}/a)^{2}L}{2E}}$$


where U and W are mixing matrices for active and Kaluza Klein states, $\lambda_j^{(n)}/a$ is the neutrino mass, m_0 is the smallest mass, and a is the extra dimension size.

LED Sterile Neutrinos

 MINOS+ will be able to achieve a limit on the extra dimension size of 0.4μm!

